Bounds on the Sizes of Decision Diagrams

نویسنده

  • Vaclav Dvorak
چکیده

Known upper bounds on the number of required nodes (size) in the ordered binary and multiple-valued decision diagram (DD) for representation of logic functions are reviewed and reduced by a small constant factor. New upper bounds are derived for partial logic functions containing don't cares and also for complete Boolean functions specified by Boolean expressions. The evaluation of upper bounds is based on a bottom-up algorithm for constructing efficient ordered DDs developed by the author. Category: Hardware Logic Design Design Aids

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and Heuristic Minimization of Determinant Decision Diagrams

Determinant Decision Diagram (DDD) is a variant of binary decision diagrams (BDDs) for representing symbolic matrix determinants and cofactors in symbolic circuit analysis. DDD-based symbolic analysis algorithms have time and space complexities proportional to the number of DDD vertices. Inspired by the ideas of Rudell, Drechsler, et. al. on BDD minimization, we present lowerbound based exact a...

متن کامل

On the Minimization of Longest Path Length for Decision Diagrams

In this paper, we consider the minimization of the longest path length (LPL) for binary decision diagrams (BDDs) and heterogeneous multi-valued decision diagrams (MDDs). Experimental results show that: (1) For many logic functions, node minimization of BDDs also minimizes the LPLs of BDDs. (2) When we use heterogeneous MDDs for representing logic functions and minimize the memory sizes of heter...

متن کامل

Efficiency Evaluation and Ranking DMUs in the Presence of Interval Data with Stochastic Bounds

On account of the existence of uncertainty, DEA occasionally faces the situation of imprecise data, especially when a set of DMUs include missing data, ordinal data, interval data, stochastic data, or fuzzy data. Therefore, how to evaluate the efficiency of a set of DMUs in interval environments is a problem worth studying. In this paper, we discussed the new method for evaluation and ranking i...

متن کامل

Determining the Optimal Value Bounds of the Objective Function in Interval Quadratic Programming Problem with Unrestricted Variables in Sign

In the most real-world applications, the parameters of the problem are not well understood. This is caused the problem data to be uncertain and indicated with intervals. Interval mathematical models include interval linear programming and interval nonlinear programming problems.A model of interval nonlinear programming problems for decision making based on uncertainty is interval quadratic prog...

متن کامل

Decision making with interval influence diagrams

In previous work [1, 2] we defined a mechanism for performing probabilistic reasoning in influence dia­ grams using interval rather than point-valued proba­ bilities. In this paper we extend these procedures to incorporate decision nodes and interval-valued value functions in the diagram. We derive the procedures for chance node removal (calculating expected value) and decision node removal (op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997